અંતરાલ $[0, 1]$ માં નીચે આપેલ વિધેય માટે લાંગ્રજય મધ્યકમાન પ્રમેય લાગુ ન પાડી શકાય.
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{\frac{1}{2} - x,\,\,\,\,\,\,\,\,\,x < \frac{1}{2}} \\
{{{\left( {\frac{1}{2} - x} \right)}^2},\,x \geqslant \frac{1}{2}}
\end{array}} \right.$
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{\frac{{\sin x}}{x}\,\,x \ne 0} \\
{1,\,\,\,\,\,\,\,\,x = \frac{1}{2}}
\end{array}} \right.$
$f(x) = x|x|$
$f(x) = |x|$
ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી
$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.
નીચેના બે વિધાનો ધ્યાને લો.
$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$
$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,
જો સમીકરણ $a_nx^n + a_{n-1}x^{n-1}+ …. + a_1x = 0 $ નું ધન બીજ $x = \alpha $ હોય, તો સમીકરણ $na_nx^{n-1 } + (n - 1) a_{n-1}x^{n-2} + …. + a_1 = 0$ નું ધન બીજ કેવું હોય ?
આપેલ પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?
$[2, 4]$ પર વ્યાખ્યાયિત વિધેય $f(x)=x^{2}$ માટે $[2, 4]$ પર મધ્યકમાન પ્રમેય ચકાસો.
જો $f(x) = ax^3 + bx^2 + 11x - 6, x \,\in [1, 3]$ એ રોલના પ્રમેયની શરતોનું પાલન કરે અને ${f}'\,\left( {2\, + \,\frac{1}{{\sqrt 3 }}} \right)\, = \,0$ થાય, તો $a$ અને $b$ શોધો.