If$\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$, then
$ - 2 > x > - 1$
$ - 2 \ge x \ge - 1$
$ - 2 < x < - 1$
$ - 2 < x \le - 1$
If $x,\;y,\;z$ are real and distinct, then $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ is always
If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then
If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
The number of solution$(s)$ of the equation $ln(lnx)$ = $log_xe$ is -
If $\alpha ,\beta ,\gamma $are the roots of the equation ${x^3} + x + 1 = 0$, then the value of ${\alpha ^3}{\beta ^3}{\gamma ^3}$