If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided

  • [IIT 1984]
  • A

    $a > b > c$

  • B

    $a < b < c$

  • C

    $a > c < b$

  • D

    $a < c < b$

Similar Questions

If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -

If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to

The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is

The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be

If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are

$\left( {\beta \gamma  + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha  + \frac{1}{\beta }} \right),\,\left( {\alpha \beta  + \frac{1}{\gamma }} \right)$