If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
$a > b > c$
$a < b < c$
$a > c < b$
$a < c < b$
If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to
The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is
The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be
If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are
$\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$