જો રેખીય સમીકરણો $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$ અનંત ઉકેલ ધરાવે છે તો $\lambda + \mu $ ની કિમંત મેળવો.
$12$
$7$
$10$
$9$
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
ધારો ક $A.P$. (સમાંતર શ્રેણી) ના ત્રણ ભિત્ર ક્રમિક પદો $a, b, c$ માટે રેખાઓ$a x+b y+c=0$ બિંદુ $\mathrm{P}$ પર સંગામી થાય છે તથા $\mathrm{Q}(\alpha, \beta)$ એવું બિંદુ છે કે જેથી સમીકરણ સંહતિ $x+y+z=6 \text {, }$ , $2 x+5 y+\alpha z=\beta $ અને $x+2 y+3 z=4 $ ને અનંત ઉકેલો મળે. તો $(\mathrm{PQ})^2=. . . . . $
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
ધારોકે $s$ એ $\theta \in[-\pi, \pi]$ ની એવી તમામ કિંમતોનો ગણ છે જેના માટે સુરેખ સમીકરણ સંહતિ
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
ને અસાહજિક $(non-trivial)$ ઉકેલ છે.તો $\frac{120}{\pi} \sum_{\theta \in s} \theta=.........$
જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.