If the system of equations

$x+y+z=2$

$2 x+4 y-z=6$

$3 x+2 y+\lambda z=\mu$ has infinitely many solutions, then 

  • [JEE MAIN 2020]
  • A

    $\lambda-2 \mu=-5$

  • B

    $2 \lambda-\mu=5$

  • C

    $2 \lambda+\mu=14$

  • D

    $\lambda+2 \mu=14$

Similar Questions

The determinant $\left| {\begin{array}{*{20}{c}}{\cos \,\,(\theta \, + \,\phi )}&{ - \,\sin \,\,(\theta \, + \,\phi )}&{\cos \,2\phi }\\{\sin \,\theta }&{\cos \,\theta }&{\sin \,\phi }\\{ - \,\cos \,\theta }&{\sin \,\theta }&{\cos \,\phi }\end{array}} \right|$ is :

An ordered pair $(\alpha , \beta )$ for which the system of linear equations

$\left( {1 + \alpha } \right)x + \beta y + z = 2$ ; $\alpha x + \left( {1 + \beta } \right)y + z = 3$ ; $\alpha x  + \beta y + 2z = 2$ has a unique solution, is

  • [JEE MAIN 2019]

For which of the following ordered pairs $(\mu, \delta)$ the system of linear equations  $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ is inconsistent?

  • [JEE MAIN 2020]

The value of $\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha  + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta  + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma  + \delta } \right)}
\end{array}} \right|$ is 

Let $\alpha, \beta(\alpha \neq \beta)$ be the values of $m$, for which the equations $x+y+z=1 ; x+2 y+4 z=m$ and $x+4 y+10 z=m^2$ have infinitely many solutions. Then the value of $\sum_{n=1}^{10}\left(n^\alpha+n^\beta\right)$ is equal to :

  • [JEE MAIN 2025]