If the system of equations
$x+y+z=2$
$2 x+4 y-z=6$
$3 x+2 y+\lambda z=\mu$ has infinitely many solutions, then
$\lambda-2 \mu=-5$
$2 \lambda-\mu=5$
$2 \lambda+\mu=14$
$\lambda+2 \mu=14$
An ordered pair $(\alpha , \beta )$ for which the system of linear equations
$\left( {1 + \alpha } \right)x + \beta y + z = 2$ ; $\alpha x + \left( {1 + \beta } \right)y + z = 3$ ; $\alpha x + \beta y + 2z = 2$ has a unique solution, is
For which of the following ordered pairs $(\mu, \delta)$ the system of linear equations $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ is inconsistent?
The value of $\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma + \delta } \right)}
\end{array}} \right|$ is