If the system of equations $x + y+ z = 5$ ; $x + 2y + 3z = 9$ ; $x + 3y + \alpha z = \beta $ has infinitely many solutions, then $\beta - \alpha $ equals
$21$
$8$
$18$
$5$
The system of equations $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$, will have a non zero solution if real values of $\lambda $ are given by
If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ; $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is
Set of equations $a + b - 2c = 0,$ $2a - 3b + c = 0$ and $a - 5b + 4c = \alpha $ is consistent for $\alpha$ equal to
If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to