Set of equations $a + b - 2c = 0,$ $2a - 3b + c = 0$ and $a - 5b + 4c = \alpha $ is consistent for $\alpha$ equal to

  • A

    $1$

  • B

    $0$

  • C

    $-1$

  • D

    $2$

Similar Questions

If $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, then $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $

If the system of linear equations

$2 x+y-z=3$

$x-y-z=\alpha$

$3 x+3 y+\beta z=3$

has infinitely many solution, then $\alpha+\beta-\alpha \beta$ is equal to .... .

  • [JEE MAIN 2021]

If $a \ne b \ne c,$ the value of $x$ which satisfies the equation $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$, is

$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $

Let $A = \left[ {\begin{array}{*{20}{c}}
  2&b&1 \\ 
  b&{{b^2} + 1}&b \\ 
  1&b&2 
\end{array}} \right]$  where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is

  • [JEE MAIN 2019]