If the system of equation $2x + 3y =\, -1; 3x + y = 2; \lambda x + 2y = \mu $ is consistent, then

  • A

    $\lambda  - \mu  = 2$

  • B

    $\lambda  + \mu  = -1$

  • C

    $\lambda  + \mu  = 3$

  • D

    $\lambda  - \mu + 8= 0$

Similar Questions

If $a,b,c$ are respectively the ${p^{th}},{q^{th}}{r^{th}}$terms of an $A.P.,$ the $\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $

The ordered pair $(a, b)$, for which the system of linear equations  $3 x-2 y+z=b$  ;  $5 x-8 y+9 z=3$  ;  $2 x+y+a z=-1$ has no solution, is

  • [JEE MAIN 2022]

If the system of equations $2x + 3y - z = 0$, $x + ky - 2z = 0$ and  $2x - y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to

  • [JEE MAIN 2019]

The solutions of the equation $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ are

If the system of equations, $a^2 x - ay = 1 - a$ & $bx + (3 - 2b) y = 3 + a$ possess a unique solution $x = 1, y = 1$ then :