સમાંતર શ્રેણી $25,22,19, \ldots \ldots .$ નાં નિશ્ચિત સંખ્યાના શરૂઆતના પદનો સરવાળો $116$ હોય તો છેલ્લું પદ શોધો.
Let the sum of $n$ terms of the given $A.P.$ be $116$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here, $a=25$ and $d=22-25=-3$
$\therefore S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]$
$\Rightarrow 116=\frac{n}{2}[50-3 n+3]$
$\Rightarrow 232=n(53-3 n)=53 n-3 n^{2}$
$\Rightarrow 3 n^{2}-53 n+232=0$
$\Rightarrow 3 n^{2}-24 n-29 n+232=0$
$\Rightarrow 3 n(n-8)-29(n-8)=0$
$\Rightarrow(n-8)(3 n-29)=0$
$\Rightarrow n=8$ or $n=\frac{29}{3}$
Howerer, $n$ cannot be equal to $\frac{29}{3}$ therefore, $n=8$
$\therefore a_{8}=$ Last term $=a+(n-1) d=25+(8-1)(-3)$
$=25+(7)(-3)=25-21$
$=4$
Thus, the last term of the $A.P.$ is $4.$
સમાંતર શ્રેણીનું $r$ મું પદ $Tr$ છે. તેનું પ્રથમ પદ $a$ અને સામાન્ય તફાવત $d$ છે. જો કેટલાક ધન પૂર્ણાકો $m, n, m \neq n,$ માટે $T_m = 1/n$ અને $T_n = 1/m,$ હોય તો $a - d = …….$
જો $x_1 , x_2 , ..... , x_n$ અને $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ એ એવી બે સમાંતર શ્રેણી કે જેથી $x_3 = h_2 = 8$ અને $x_8 = h_7 = 20$ હોય તો $x_5. h_{10}$ ની કિમત મેળવો.
સમાંતર શ્રેણી $4 + 9 + 14 +19 +.......$ ના $15$ માં પદની સંખ્યા......છે.
$1 + 3 + 5 + 7 + …n$ પદ સુધી =…..
જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, }}{{\text{a}}_{\text{3}}}{\text{ }}............{\text{ , }}{{\text{a}}_{\text{n}}}$ સમગુણોત્તર શ્રેણી રચે છે.
$\left| {\begin{array}{*{20}{c}}
{\log \,{a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}} \\
{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}} \\
{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}
\end{array}} \right|$ ની કિંમતની મેળવો.