यदि सरल रेखा $ax + by = 2;a,b \ne 0$ वृत्त ${x^2} + {y^2} - 2x = 3$ को स्पर्श करती है तथा वृत्त ${x^2} + {y^2} - 4y = 6$ पर अभिलम्ब है, तब $a$ तथा $b$ के मान क्रमश: हैं
$1, -1$
$1, 2$
$ - \frac{4}{3},1$
$2, 1$
यदि रेखाएँ $3x - 4y + 4 = 0$ तथा $6x - 8y - 7 = 0$ एक वृत्त की स्पर्श रेखाएँ हों, तो वृत्त की त्रिज्या है
बिन्दु $(0, 1)$ से वृत्त ${x^2} + {y^2} - 2x + 4y = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं
यदि वक्र $x^{2}=y-6$ के बिंदु $(1,7)$ पर बनी स्पशरिखा वृत्त $x^{2}+y^{2}+16 x+12 y+c=0$ को स्पर्शे करती है, तो $c$ का मान है
यदि $2x - 4y = 9$ व $6x - 12y + 7 = 0$ एक ही वृत्त की स्पर्श रेखायें हों, तो इसकी त्रिज्या होगी
वृत्त $(\mathrm{x}-\alpha)^2+(\mathrm{y}-\beta)^2=50$, जहाँ $\alpha, \beta>0$ है, का विचार कीजिए। यदि यह वृत्त रेखा $\mathrm{y}+\mathrm{x}=0$ की बिंदु $P$ की मूल बिंदु से दूरी $4 \sqrt{2}$ है, तो $(\alpha+\beta)^2$ बराबर है................।