જો બે ગણ $A$ અને $B$ આપેલ હોય તો $A \cap (A \cup B)$ મેળવો.
$A$
$B$
${A^c}$
${B^c}$
જો $X=\{a, b, c, d\}$ અને $Y=\{f, b, d, g\},$ તો મેળવો : $X \cap Y$
જો બે અલગ ગણો $A$ અને $B$ હોય તો $n(A \cup B)$ =
આપેલ સંબંધ જુઓ :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
પૈકી . . . . સત્ય છે.
જો $\mathrm{X}=\{\mathrm{n} \in \mathrm{N}: 1 \leq \mathrm{n} \leq 50\} $ આપલે છે . જો $A=\{n \in X: n \text { is a multiple of } 2\}$ અને $\mathrm{B}=\{\mathrm{n} \in \mathrm{X}: \mathrm{n} \text { is a multiple of } 7\},$ હોય તો $X$ ના નાનામાં નાનો ઉપગણની ઘટક સંખ્યા મેળવો કે જે $\mathrm{A}$ અને $\mathrm{B}$ ને સમાવે .
આપેલ જોડના ગણ પરસ્પર અલગગણ છે? : $\{a, e, i, o, u\}$ અને $\{c, d, e, f\}$