બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
$n(A) + n(B)$
$n(A) + n(B) - n(A \cap B)$
$n(A) + n(B) + n(A \cap B)$
$n(A)\,n(B)$
જો $A ,B$ અને $C$ એ ત્રણ ગણ છે કે જેથી $A \cap B = A \cap C$ અને $A \cup B = A \cup C$ બને તો.,
$A$ અને $B$ ગણો છે. કોઈ ગણ $X$ માટે જો $A \cap X=B \cap X=\phi$ અને $A \cup X=B \cup X$ તો સાબિત કરો કે $A = B$
( સૂચનઃ $A = A \cap (A \cup X),B = B \cap (B \cup X)$ અને વિભાજનના નિયમનો ઉપયોગ કરો. )
$V =\{a, e, i, o, u\}$ અને $B =\{a, i, k, u\}$ છે. $V -B$ અને $B -V$ શોધો.
જો $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે $\} ,B = \{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ $C = \{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ અને $D = \{ x:x$ એ અવિભાજ્ય સંખ્યા છે, $\} $ તો મેળવો : $B \cap C$
$A=\{2,4,6,8\}$ અને $B=\{6,8,10,12\}$ છે. $A \cup B$ મેળવો.