If the set $A$ has $3$ elements and the set $B=\{3,4,5\},$ then find the number of elements in $( A \times B ).$
It is given that set $A$ has $3$ elements and the elements of set $B$ are $3,4,$ and $5.$
$\Rightarrow$ Number of elements in set $B=3$
Number of elements in $(A \times B)$
$ = {\rm{ (}}$ Number of elements in $A) \times {\rm{ (}}$ Number of elements in $B)$
$=3 \times 3=9$
Thus, the number of elements in $(A \times B)$ in $9$
Let $A, B, C$ are three sets such that $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$, then $n((A × B) \cap (B × C)) $ is equal to -
If $R$ is the set of all real numbers, what do the cartesian products $R \times R$ and $R \times R \times R$ represent?
If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to
Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.
$A = \{1,2,3,4......100\}, B = \{51,52,53,...,180\}$, then number of elements in $(A \times B) \cap (B \times A)$ is