If $R$ is the set of all real numbers, what do the cartesian products $R \times R$ and $R \times R \times R$ represent?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The Cartesian product $R \times R$ represents the set $R \times R =\{(x, y): x, y \in R \}$ which represents the coordinates of all the points in two dimensional space and the cartesian product $R \times R \times R$ represents the set $R \times R \times R =\{(x, y, z): x, y, z \in R \}$ which represents the coordinates of all the points in three-dimensional space.

Similar Questions

If $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ find $A$ and $B$

If $(x+1, y-2)=(3,1),$ find the values of $\mathrm{x}$ and $\mathrm{y}$.

If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$

Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is

If the set $A$ has $p$ elements, $B$  has $q$ elements, then the number of elements in $A × B$ is