Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A=\{1,2\}$ and $B=\{3,4\}$

$\therefore A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$

$\Rightarrow n(A \times B)=4$

We know that if $C$ is a set with $n(C)=m,$ then $n[P(C)]=2^{m}$

Therefore, the set $A \times B$ has $2^{4}=16$ subsets. These are

$\varnothing,\{(1,3)\},\{(1,4)\},\{(2,3)\},\{(2,4)\},\{(1,3)(1,4)\}$

$,\{(1,3),(2,3)\}$

$\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4)(2,4)\},\{(2,3)(2,4)\}$

$\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\}$

$\{(1,4),(2,3),(2,4)\},\{(1,3),(1,4),(2,3),(2,4)\}$

Similar Questions

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$A \times(B \cap C)$

If $A = \{ x:{x^2} - 5x + 6 = 0\} ,\,B = \{ 2,\,4\} ,\,C = \{ 4,\,5\} ,$ then $A \times (B \cap C)$ is

If $A, B$ and $C$ are any three sets, then $A \times (B  \cup C)$ is equal to

If $A = \{ 1,\,2,\,3,\,4\} $; $B = \{ a,\,b\} $ and $f$ is a mapping such that $f:A \to B$, then $A \times B$ is

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$(A \times B) \cap(A \times C)$