$A = \{1,2,3,4......100\}, B = \{51,52,53,...,180\}$, then number of elements in $(A \times B) \cap  (B \times A)$ is

  • A

    $1800$

  • B

    $1600$

  • C

    $2500$

  • D

    $1500$

Similar Questions

If two sets $A$ and $B$ are having $99$ elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$(A \times B) \cap(A \times C)$

If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\} .$ Find $A$ and $B$

If $R$ is the set of all real numbers, what do the cartesian products $R \times R$ and $R \times R \times R$ represent?

If $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$ then $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ is equal to