જો સમીકરણ $x^3 - 9x^2 + \alpha x - 15 = 0 $ ના બીજો સમાંતર શ્રેણીમાં હોય તો $\alpha$ ની કિમત મેળવો 

  • A

    $0$

  • B

    $20$

  • C

    $21$

  • D

    $23$

Similar Questions

અહી $S_{1}$ એ સમાંતર શ્રેણીના પ્રથમ $2 n$ નો સરવાળો દર્શાવે છે અને $S_{2}$ તે જ સમાંતર શ્રેણીના પ્રથમ $4n$ નો સરવાળો દર્શાવે છે. જો $\left( S _{2}- S _{1}\right) =1000$ હોયતો પ્રથમ $6 n$ પદોનો સરવાળો મેળવો.

  • [JEE MAIN 2021]

જો $S_1, S_2$ અને $S_3$ અનુક્રમે સમાંતર શ્રેણીના પ્રથમ $n_1, n_2$ અને $n_3$ પદોના સરવાળા દર્શાવે તો, $\frac{{{S_1}}}{{{n_1}}}\,({n_2}\, - \,{n_3})\,\, + \,\,\frac{{{S_2}}}{{{n_2}}}\,({n_3}\, - \,{n_1})\,\, + \,\,\frac{{{S_3}}}{{{n_3}}}\,({n_1}\, - \,{n_2})\,\, = ....$

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{2 n-3}{6}$

જો સમાંતર શ્રેણી નું $p$  મું, $q$  મું , $r$  મું પદ અનુક્રમે  $1/a, 1/b, 1/c$   હોય તો $ab(p - q) + bc(q - r) + ca(r - p) = …….$ 

જો $a, b, c$ સમાંતર શ્રેણીમાં હોય, તો $(a - c)^2 = ……$