यदि फलन $f(x) = {x^3} - 6{x^2} + ax + b$ रौले प्रमेय को अंतराल $[1,\,3]$ में संतुष्ट करता है और $f'\left( {\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}} \right) = 0$, तब $a =$ ..............
$ - 11$
$ - 6$
$6$
$11$
अंतराल $ [0, 1] $ में लैंगरेंज मध्यमान प्रमेय निम्न में से किसके लिए लागू नहीं है
माध्यमान प्रमेय सत्यापित कीजिए, यदि अंतराल $[a, b]$ में $f(x)=x^{2}-4 x-3,$ जहाँ $a=1$ और $b=4$ है।
फलन$f(x) = x(x + 3){e^{ - (1/2)x}}$ रोले प्रमेय की सभी शर्तों को $[-3, 0] $ में सन्तुष्ट करता है। $c$ का मान है
वास्तविक गुणांक वाले बहुपद $g ( x )$ के लिये, माना $g ( x )$ के विभिन्न वास्तविक मूलों की संख्या $m _{ g }$ से दर्शाते है। माना वास्तविक गुणांक वाले बहुपदों का समुच्चय $S$ है जो
$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\}$ द्वारा परिभाषित है। बहुपद $f$ के लिये, माना $f^{\prime}$ तथा $f^{\prime \prime}$ क्रमशः इसके प्रथम तथा द्वितीय कोटि अवकलज है। तब $\left( m f^{\prime}+ m f^{\prime \prime}\right)$, जहाँ $f \in S$ का न्यूनतम संभव मान होगा
वक्र $y = {x^3}$ पर अन्तराल $ [-2, 2]$ के बीच स्थित उन बिन्दुओं के भुज, जिन पर खींची गई स्पर्शियों की प्रवणतायें अन्तराल $ [-2, 2]$ के लिए मध्यमान प्रमेय (Mean value theorem) द्वारा ज्ञात की जा सकती हैं, हैं