વિધેય $f(x) = - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ અને $g(x)=f^{-1}(x) \,;$ હોય તો $g'(-\frac{7}{6})$ મેળવો.
$\frac{1}{5}$
$- \frac{1}{5}$
$\frac{6}{7}$
$ -\frac{6}{7}$
આપેલ પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?
મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .
If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx} = . . .$
જો વિધેય $f(x) = x(x + 3) e^{-x/2} $ એ અંતરાલ $[-3, 0]$ માં રોલના પ્રમેયનું પાલન કરે છે તો $C$ મેળવો.
અંતરાલ $[1, a]$ પર વિધેય $f(x) = 2x^2 + 3x + 5$ એ $x = 3$ આગળ મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $a$ ની કિમંત મેળવો.