If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is

  • A

    $n\pi + \frac{{3\pi }}{4}$

  • B

    $2n\pi + \frac{\pi }{4}$

  • C

    $2n\pi - \frac{\pi }{4}$

  • D

    $2n\pi \pm \frac{\pi }{4}$

Similar Questions

Find the principal and general solutions of the question $\tan x=\sqrt{3}$.

The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :

If ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ then the general value of $\theta $ is

Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.

  • [JEE MAIN 2022]

The number of elements in the set $S=$ $\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-\right.$ $\left.10 \cos ^{2} \theta+5=0\right\}$ is

  • [JEE MAIN 2022]