એક બંધ પૃષ્ઠની અંદર અને બહાર જતું વિદ્યુત ફલ્કસ ${\varphi _1}$ અને ${\varphi _2}$ છે.તો પૃષ્ઠની અંદર વિદ્યુતભાર કેટલો હશે?
$({\varphi _1} + {\varphi _2}){\varepsilon _0}$
$({\varphi _2} - {\varphi _1}){\varepsilon _0}$
$({\varphi _1} + {\varphi _2})/{\varepsilon _0}$
$({\varphi _2} - {\varphi _1})/{\varepsilon _0}$
$L$ બાજુવાળા સમઘન $(A\,B\,C\,D\,E\,F\,G\,H)$ ના કેન્દ્ર પર $q$ વિદ્યુતભાર મૂકવામાં આવે છે. કેન્દ્ર $O$ થી $L$ અંતરે $q$ વિદ્યુતભાર મૂકવામાં આવે છે. $BGFC$ માંથી પસાર થતું વિદ્યુતફ્લક્સ કેટલું હશે?
બે વીજભારો $5 Q$ અને $-2 Q$ અનુક્રમે બિંદુ $(3 a, 0)$ અને $(-5 a, 0)$ પર રહેલા છે. ઉગમબિંદુ પર કેન્દ્ર અને $4 a$ ત્રિજ્યાવાળા ગોળામાંથી પસાર થતું ફલકસ_______છે.
$L$ મીટર બાજુવાળો ચોરસ પેપરના સમતલમાં છે. સમાન વિદ્યુતક્ષેત્ર $\vec E\;(V/m) $ પેપરના સમતલમાં છે, પણ તે ચોરસના નીચેના અડધા વિસ્તારમાં સીમિત છે. (આકૃતિ જુઓ) પૃષ્ઠ સાથે સંકળાયેલ વિદ્યુતફલક્સ $SI$ એકમમાં કેટલું હશે?
ચાર સપાટી માટે વિદ્યુતભારનું વિતરણ આપેલ છે. તેમને અનુરૂપ વિદ્યુત ફ્લક્સ ${\phi _1},{\phi _2},{\phi _3}$ અને ${\phi _4}$ હોય તો નીચેનામાંથી શું સાચું પડે?
નીચે બે વિધાન આપવામાં આવ્યા છે :
વિધાન $I :$ એક વિદ્યુત દ્વિધ્રુવીને પોલા ગોળાના કેન્દ્રમાં મૂકવામાં આવે છે. ગોળામાંથી પસાર થતા વિદ્યુત ક્ષેત્રનું ફલકસ શૂન્ય છે પરંતુ ગોળામાં ક્યાંય વિદ્યુત ક્ષેત્ર શૂન્ય નથી.
વિધાન $II :$ ઘન ધાત્વીક ગોળાની ત્રિજ્યા $'R'$ અને તેના પર રહેલો કુલ વિજભાર $Q$ છે.$r ( < R)$ ત્રિજ્યા ધરાવતા ગોલીય સપાટીના કોઈપણ બિંદુ પર વિદ્યુત ક્ષેત્ર શૂન્ય છે પરંતુ $‘r'$ ત્રિજ્યા ધરાવતા આ બંધ ગોલીય સપાટીમાંથી પસાર થતા વિદ્યુત ફ્લકસ નું મૂલ્ય શૂન્ય નથી.
ઉપરોક્ત વિધાનને અનુલક્ષીને આપેલ વિકલ્પોમાંથી સાચો જવાબ પસંદ કરો :