यदि $(1+a)^{n}$ के प्रसार में $a^{r-1}, a^{r}$ तथा $a^{r+1}$ के गुणांक समांतर श्रेणी में हों तो सिद्ध कीजिए कि $n^{2}-n(4 r+1)+4 r^{2}-2=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The $(r+1)^{\text {th }}$ term in the expansion is ${\,^n}{C_r}{a^r}$. Thus it can be seen that $a^{r}$ occurs in the $(r+1)^{\text {th }}$ term, and its coefficient is ${\,^n}{C_r}$.

Hence the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ are ${\,^n}{C_{r - 1}},{\,^n}{C_r}$ and $^{n} C_{r+1},$ respectively. since these coefficients are in arithmetic progression, so we have, ${\,^n}{C_{r - 1}} + {\,^n}{C_{r + 1}} = 2.{\,^n}C,$ This gives

$\frac{n !}{(r-1) !(n-r+1) !}+\frac{n !}{(r+1) !(n-r-1) !}=2 \times \frac{n !}{r !(n-r) !}$

i.e.,      $\frac{1}{(r-1) !(n-r+1)(n-r)(n-r-1) !}+\frac{1}{(r+1)(r)(r-1) !(n-r-1) !}$

$=2 \times \frac{1}{r(r-1) !(n-r)(n-r-1) !}$

or      $\frac{1}{(r-1) !(n-r-1) !}\left[\frac{1}{(n-r)(n-r+1)}+\frac{1}{(r+1)(r)}\right]$

$=2 \times \frac{1}{(r-1) !(n-r-1) ![r(n-r)]}$

i.e.,    $\frac{1}{(n-r+1)(n-r)}+\frac{1}{r(r+1)}=\frac{2}{r(n-r)}$

or     $\frac{r(r+1)+(n-r)(n-r+1)}{(n-r)(n-r+1) r(r+1)}=\frac{2}{r(n-r)}$

or     $r(r+1)+(n-r)(n-r+1)=2(r+1)(n-r+1)$

or     $r^{2}+r+n^{2}-n r+n-n r+r^{2}-r=2\left(n r-r^{2}+r+n-r+1\right)$

or      $n^{2}-4 n r-n+4 r^{2}-2=0$

i.e.,     $n^{2}-n(4 r+1)+4 r^{2}-2=0$

Similar Questions

$\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ विस्तार में (expansion) $x^{11}$ का गुणांक (coefficient) है-

  • [IIT 2014]

यदि $(1+ x )^{ p }(1- x )^{ q }, p , q \leq 15$, के प्रसार में $x$ तथा $x ^2$ के गुणांक क्रमशः $-3$ तथा $-5$ हैं, तो $x ^3$ का गुणांक बराबर है $..............$

  • [JEE MAIN 2022]

${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है

$x$ के घटते घात $(decreasing\,powers)$ में $\left(x^{1 / 2}+\frac{1}{2 x^{1 / 4}}\right)^n$ का प्रसार $(expansion)$ लिखिए. मान लें कि पहले तीन पदों के गुणांकों $(coefficients)$ से अंकगणितीय शंढी $(arithmetic \,progression)$ बनती है। तब प्रसार मे $s$ के पूर्णांक घात $(integer\,powers)$ वालें पदों की संख्य है - -

  • [KVPY 2010]

यदि ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ में ${x^7}$ का गुणांक, ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ में ${x^{ - 7}}$ के गुणांक के समान हो, तब $ab =$

  • [AIEEE 2005]