If the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ in the expansion of $(1+a)^{n}$ are in arithmetic progression, prove that $n^{2}-n(4 r+1)+4 r^{2}-2=0$
The $(r+1)^{\text {th }}$ term in the expansion is ${\,^n}{C_r}{a^r}$. Thus it can be seen that $a^{r}$ occurs in the $(r+1)^{\text {th }}$ term, and its coefficient is ${\,^n}{C_r}$.
Hence the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ are ${\,^n}{C_{r - 1}},{\,^n}{C_r}$ and $^{n} C_{r+1},$ respectively. since these coefficients are in arithmetic progression, so we have, ${\,^n}{C_{r - 1}} + {\,^n}{C_{r + 1}} = 2.{\,^n}C,$ This gives
$\frac{n !}{(r-1) !(n-r+1) !}+\frac{n !}{(r+1) !(n-r-1) !}=2 \times \frac{n !}{r !(n-r) !}$
i.e., $\frac{1}{(r-1) !(n-r+1)(n-r)(n-r-1) !}+\frac{1}{(r+1)(r)(r-1) !(n-r-1) !}$
$=2 \times \frac{1}{r(r-1) !(n-r)(n-r-1) !}$
or $\frac{1}{(r-1) !(n-r-1) !}\left[\frac{1}{(n-r)(n-r+1)}+\frac{1}{(r+1)(r)}\right]$
$=2 \times \frac{1}{(r-1) !(n-r-1) ![r(n-r)]}$
i.e., $\frac{1}{(n-r+1)(n-r)}+\frac{1}{r(r+1)}=\frac{2}{r(n-r)}$
or $\frac{r(r+1)+(n-r)(n-r+1)}{(n-r)(n-r+1) r(r+1)}=\frac{2}{r(n-r)}$
or $r(r+1)+(n-r)(n-r+1)=2(r+1)(n-r+1)$
or $r^{2}+r+n^{2}-n r+n-n r+r^{2}-r=2\left(n r-r^{2}+r+n-r+1\right)$
or $n^{2}-4 n r-n+4 r^{2}-2=0$
i.e., $n^{2}-n(4 r+1)+4 r^{2}-2=0$
Find $a$ if the coefficients of $x^{2}$ and $x^{3}$ in the expansion of $(3+a x)^{9}$ are equal.
The term independent of $x$ in the expansion of ${\left( {2x + \frac{1}{{3x}}} \right)^6}$ is
If $n$ is even positive integer, then the condition that the greatest term in the expansion of ${(1 + x)^n}$ may have the greatest coefficient also, is
If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$