If the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ in the expansion of $(1+a)^{n}$ are in arithmetic progression, prove that $n^{2}-n(4 r+1)+4 r^{2}-2=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The $(r+1)^{\text {th }}$ term in the expansion is ${\,^n}{C_r}{a^r}$. Thus it can be seen that $a^{r}$ occurs in the $(r+1)^{\text {th }}$ term, and its coefficient is ${\,^n}{C_r}$.

Hence the coefficients of $a^{r-1}, a^{r}$ and $a^{r+1}$ are ${\,^n}{C_{r - 1}},{\,^n}{C_r}$ and $^{n} C_{r+1},$ respectively. since these coefficients are in arithmetic progression, so we have, ${\,^n}{C_{r - 1}} + {\,^n}{C_{r + 1}} = 2.{\,^n}C,$ This gives

$\frac{n !}{(r-1) !(n-r+1) !}+\frac{n !}{(r+1) !(n-r-1) !}=2 \times \frac{n !}{r !(n-r) !}$

i.e.,      $\frac{1}{(r-1) !(n-r+1)(n-r)(n-r-1) !}+\frac{1}{(r+1)(r)(r-1) !(n-r-1) !}$

$=2 \times \frac{1}{r(r-1) !(n-r)(n-r-1) !}$

or      $\frac{1}{(r-1) !(n-r-1) !}\left[\frac{1}{(n-r)(n-r+1)}+\frac{1}{(r+1)(r)}\right]$

$=2 \times \frac{1}{(r-1) !(n-r-1) ![r(n-r)]}$

i.e.,    $\frac{1}{(n-r+1)(n-r)}+\frac{1}{r(r+1)}=\frac{2}{r(n-r)}$

or     $\frac{r(r+1)+(n-r)(n-r+1)}{(n-r)(n-r+1) r(r+1)}=\frac{2}{r(n-r)}$

or     $r(r+1)+(n-r)(n-r+1)=2(r+1)(n-r+1)$

or     $r^{2}+r+n^{2}-n r+n-n r+r^{2}-r=2\left(n r-r^{2}+r+n-r+1\right)$

or      $n^{2}-4 n r-n+4 r^{2}-2=0$

i.e.,     $n^{2}-n(4 r+1)+4 r^{2}-2=0$

Similar Questions

Find $a$ if the coefficients of $x^{2}$ and $x^{3}$ in the expansion of $(3+a x)^{9}$ are equal.

The term independent of $x$ in the expansion of ${\left( {2x + \frac{1}{{3x}}} \right)^6}$ is

If $n$ is even positive integer, then the condition that the greatest term in the expansion of ${(1 + x)^n}$ may have the greatest coefficient also, is

Let the coefficients of three consecutive terms $T_r$, $T _{ r +1}$ and $T _{ r +2}$ in the binomial expansion of $( a + b )^{12}$ be in a $G.P.$ and let $p$ be the number of all possible values of $r$. Let $q$ be the sum of all rational terms in the binomial expansion of $(\sqrt[4]{3}+\sqrt[3]{4})^{12}$. Then $p + q$ is equal to :

  • [JEE MAIN 2025]

If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$

  • [JEE MAIN 2022]