Let the coefficients of three consecutive terms $T_r$, $T _{ r +1}$ and $T _{ r +2}$ in the binomial expansion of $( a + b )^{12}$ be in a $G.P.$ and let $p$ be the number of all possible values of $r$. Let $q$ be the sum of all rational terms in the binomial expansion of $(\sqrt[4]{3}+\sqrt[3]{4})^{12}$. Then $p + q$ is equal to :

  • [JEE MAIN 2025]
  • A
    $283$
  • B
    $295$
  • C
    $287$
  • D
    $299$

Similar Questions

In the expansion of ${\left( {x - \frac{1}{x}} \right)^6}$, the constant term is

If the coefficient of the middle term in the expansion of ${(1 + x)^{2n + 2}}$ is $p$ and the coefficients of middle terms in the expansion of ${(1 + x)^{2n + 1}}$ are $q$ and $r$, then

If the ratio of the fifth term from the begining to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}: 1$, then the third term from the beginning is:

  • [JEE MAIN 2023]

If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of  $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$

If the second, third and fourth terms in the expansion of $(x+y)^{\mathrm{n}}$ are $135$,$30$ and $\frac{10}{3}$, respectively, then $6\left(n^3+x^2+y\right)$ is equal to .............

  • [JEE MAIN 2024]