यदि किसी वृत्त का केन्द्र $(-6, 8)$ है एवं यह बिन्दु $(0, 0)$ से गुजरता है, तो $(0, 0)$ पर इसकी स्पर्श रेखा का समीकरण है
$2y = x$
$4y = 3x$
$3y = 4x$
$3x + 4y = 0$
वृत्त ${x^2} + {y^2} = 4$ के उन स्पर्शियों के समीकरण जो कि $x + 2y + 3 = 0$ के समान्तर हैं, हैं
यदि एक रेखा मूल बिन्दु से गुजरे तथा वृत्त ${(x - 4)^2} + {(y + 5)^2} = 25$ को स्पर्श करे तो उसकी प्रवणता होनी चाहिये
एक वृत्त जिसका केन्द्र $(a, b)$ है मूल बिन्दु से गुजरता है। मूल बिन्दु पर वृत्त की स्पर्श रेखा का समीकरण है
मानाकि वृत्त $C$ सरल रेखा $L _1: 4 x -3 y + K _1=0$ तथा $L _2: 4 x -3 y + K _2=0, K _1, K _2 \in R$ को स्पर्श करता टै। यदि एक सरल रेखा वृत्त $C$ के केन्द्र से गुजरती है $L _1$ को $(-1,2)$ तथा $L _2$ को $(3,-6)$ पर प्रतिच्छेद करती है तो वृत्त $C$ का समीकऱण होगा
वृत्त ${x^2} + {y^2} = 4$ के किसी बिन्दु $P$ पर स्पर्श रेखा अक्षों को $A$ व $B$ पर मिलती है, तो