જો બુલિયન બહુપદી $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ એ સંપૂર્ણ સત્ય હોય તો $p *(\sim q )$ એ . . . . ને તુલ્ય છે.
$q \Rightarrow p$
$\sim q \Rightarrow p$
$p \Rightarrow \sim q$
$p \Rightarrow q$
$\pi$
જો વિધાન $p \rightarrow (q \vee r)$ સાચું હોય, વિધાનો $p, q, r$ ની અનુક્રમે સત્યાર્થતા મૂલ્ય કયું થાય ?
વિધાન $- I : (p \wedge \sim q) \wedge (\sim p \wedge q)$ એ તર્કદોષી છે.
વિધાન $- II : (p \rightarrow q) \Leftrightarrow (\sim q \rightarrow \sim p)$ એ નિત્યસત્ય છે .
જો $p \to ( \sim p\,\, \vee \, \sim q)$ અસત્ય હોય તો $p$ અને $q$ અનુક્રમે .............. થાય .
નીયે પ્રમાણે બે વિધાનો વિચારો :
$P_1: \sim( p \rightarrow \sim q )$
$P_2:( p \wedge \sim q ) \wedge((\sim p ) \vee q )$
જો વિધાન $p \rightarrow((\sim p ) \vee q )$ નું મુલ્યાંકન $FALSE$ થતું હોય, તો :