જો ઉપવલયની ગૈાણ અક્ષના અત્યંબિંદુએ નાભિ સાથે આંતરેલો ખૂણો $\frac{\pi }{2}$ હોય તો ઉપવલયની ઉકેન્દ્રતા મેળવો.
$1\over2$
$1/\sqrt 2 $
$\sqrt 3 /2$
$1/2\sqrt 2 $
ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ ની નાભિલંબના અત્યબિંદુએ દોરવામાં આવેલ સ્પર્શક દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ ............... $\mathrm{sq. \, units}$ મેળવો.
ધારોકે રેખા $2 x+3 y-\mathrm{k}=0, \mathrm{k}>0$ એ $x$-અક્ષ અને $y$-અક્ષ ને અનુક્રમે બિંદુઓ $A$ અને $B$ માં છેદે છે. જો રેખા ખંડ $A B$ ને વ્યાસ તરીકે લેતા બનતા વર્તુળ સમીકરણ $x^2+y^2-3 x-2 y=0$ હોય અને ઉપવલય $x^2+9 y^2=\mathrm{k}^2$ ના નાભિલંબ ની લંબાઈ $\frac{\mathrm{m}}{\mathrm{n}}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજય છે, તો $2 m+n=$ ...........
અહી $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ અને $\quad T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ હોય તો $n ( S \cap T )$ ની કિમંત $......$ થાય.
ઉપવલય $\frac{x^2}{25}+\frac{y^2}{16}=1$ ની, $\left(1, \frac{2}{5}\right)$ મધ્યબિંદુ વાળી, જીવાની લંબાઈ .................................છે.
રેખા $x = at^2 $ એ ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ને વાસ્તવિક બિંદઓમાં ક્યારે મળે ?