If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $
$1$
$2$
$3$
$4$
Let $x_n, y_n, z_n, w_n$ denotes $n^{th}$ terms of four different arithmatic progressions with positive terms. If $x_4 + y_4 + z_4 + w_4 = 8$ and $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ then maximum value of $x_{20}.y_{20}.z_{20}.w_{20}$ is-
If $a,\;b,\;c$ are in $A.P.$, then $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ will be in
Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$
If the sum of $\mathrm{n}$ terms of an $\mathrm{A.P.}$ is $n P+\frac{1}{2} n(n-1) Q,$ where $\mathrm{P}$ and $\mathrm{Q}$ are constants, find the common difference.