If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Let $T_r$ be the $r^{\text {th }}$ term of an $A.P.$ If for some $m$, $T _{ m }=\frac{1}{25}, T_{25}=\frac{1}{20}$ and $20 \sum_{ r =1}^{25} T_{ r }=13$, then $5 m \sum_{ r = m }^{2 m} T _{ r }$ is equal to:

  • [JEE MAIN 2025]

Let $x_n, y_n, z_n, w_n$ denotes $n^{th}$ terms of four different arithmatic progressions with positive terms. If $x_4 + y_4 + z_4 + w_4 = 8$ and $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ then maximum value of $x_{20}.y_{20}.z_{20}.w_{20}$ is-

If $a,\;b,\;c$ are in $A.P.$, then $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ will be in

Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$

If the sum of $\mathrm{n}$ terms of an $\mathrm{A.P.}$ is $n P+\frac{1}{2} n(n-1) Q,$ where $\mathrm{P}$ and $\mathrm{Q}$ are constants, find the common difference.