If the ${n^{th}}$ term of an $A.P.$ be $(2n - 1)$, then the sum of its first $n$ terms will be

  • A

    ${n^2} - 1$

  • B

    ${(2n - 1)^2}$

  • C

    ${n^2}$

  • D

    ${n^2} + 1$

Similar Questions

The number of terms common to the two A.P.'s $3,7,11, \ldots ., 407$ and $2,9,16, \ldots . .709$ is

  • [JEE MAIN 2020]

For three positive integers $p , q , r , x ^{ pq p ^2}= y ^{ qr }= z ^{ p ^2 r }$ and $r=p q+1$ such that $3,3 \log _y x, 3 \log _z y, 7 \log _x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to

  • [JEE MAIN 2023]

Let $a_1, a_2, a_3 \ldots$ be in an $A.P.$ such that $\sum_{ k =1}^{12} a _{2 k -1}=-\frac{72}{5} a _1, a _1 \neq 0$. If $\sum_{ k =1}^{ n } a _{ k }=0$, then $n$ is:

  • [JEE MAIN 2025]

The first term of an $A.P.$ of consecutive integers is ${p^2} + 1$ The sum of $(2p + 1)$ terms of this series can be expressed as

If the sum of the $10$ terms of an $A.P.$ is $4$ times to the sum of its $5$ terms, then the ratio of first term and common difference is