The first term of an $A.P.$ of consecutive integers is ${p^2} + 1$ The sum of $(2p + 1)$ terms of this series can be expressed as
${(p + 1)^2}$
${(p + 1)^3}$
$(2p + 1){(p + 1)^2}$
${p^3} + {(p + 1)^3}$
If $n$ is the smallest natural number such that $n+2 n+3 n+\ldots+99 n$ is a perfect square, then the number of digits of $n^2$ is
If $(b+c),(c+a),(a+b)$ are in $H.P$ , then $a^2,b^2,c^2$ are in.......
If the sum of the first $n$ terms of a series be $5{n^2} + 2n$, then its second term is
Let $a_1, a_2, a_3, \ldots$ be in an arithmetic progression of positive terms.
Let $\mathrm{A}_{\mathrm{k}}=\mathrm{a}_1{ }^2-\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2-\mathrm{a}_4{ }^2+\ldots+\mathrm{a}_{2 \mathrm{k}-1}{ }^2-\mathrm{a}_{2 \mathrm{k}}{ }^2$.
If $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ and $\mathrm{a}_1{ }^2+\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2=66$, then $\mathrm{a}_{17}-\mathrm{A}_7$ is equal to....................
Write the first five terms of the following sequence and obtain the corresponding series :
$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n\, \geq\, 2$