For the natural numbers $m, n$, if $(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m+n} y^{m+n}$ and $a_{1}=a_{2}$ $=10$, then the value of $(m+n)$ is equal to:

  • [JEE MAIN 2021]
  • A

    $88$

  • B

    $64$

  • C

    $100$

  • D

    $80$

Similar Questions

For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to

  • [IIT 2010]

Coefficient of ${t^{12}}$  in ${\left( {1 + {t^2}} \right)^6}\left( {1 + {t^6}} \right)\left( {1 + {t^{12}}} \right)$ is-

Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4 .$ If the maximum value of the term independent of $x$ in the binomial expansion of $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is $10 k$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]

If the fourth term in the Binomial expansion of ${\left( {\frac{2}{x} + {x^{{{\log }_e}x}}} \right)^6}(x > 0)$ is $20\times 8^7,$ then a value of $x$ is

  • [JEE MAIN 2019]

The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$ is equal to :

  • [JEE MAIN 2024]