If tangents are drawn to the ellipse $x^2 + 2y^2 = 2$ at all points on the ellipse other than its four vertices than the mid points of the tangents intercepted between the coordinate axes lie on the curve
$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$
$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$
$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$
$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
The length of the latus rectum of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$
The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is
If lines $3x + 2y = 10$ and $-3x + 2y = 10$ are tangents at the extremities of latus rectum of an ellipse whose centre is origin, then the length of latus rectum of ellipse is
If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is: