The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is
$\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y - 1)}^2}}}{8} = 1$
$\frac{{{{(x - 2)}^2}}}{8} + \frac{{{{(y - 1)}^2}}}{9} = 1$
$\frac{{{{(x + 2)}^2}}}{8} + \frac{{{{(y + 1)}^2}}}{9} = 1$
$\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{8} = 1$
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$, be a ellipse with major axis $A B$ and minor axis $C D$. Let $F_1$ and $F_2$ be its two foci, with $A, F_1, F_2, B$ in that order on the segment $A B$. Suppose $\angle F_1 C B=90^{\circ}$. The eccentricity of the ellipse is
The line $lx + my - n = 0$ will be tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if
If the radius of the largest circle with centre $(2,0)$ inscribed in the ellipse $x^2+4 y^2=36$ is $r$, then $12 r^2$ is equal to
The eccentricity of the ellipse $ (x - 3)^2 + (y - 4)^2 =$ $\frac{{{y^2}}}{9}\,$ is
If the normal to the ellipse $3x^2 + 4y^2 = 12$ at a point $P$ on it is parallel to the line, $2x + y = 4$ and the tangent to the ellipse at $P$ passes through $Q(4, 4)$ then $PQ$ is equal to