If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:

  • [JEE MAIN 2023]
  • A

    $\frac{1}{\sqrt{2}}$

  • B

    $\frac{\sqrt{3}}{2}$

  • C

    $\frac{1}{2}$

  • D

    $\frac{\sqrt{3}}{4}$

Similar Questions

An ellipse has $OB$ as semi minor axis, $F$ and $F'$ its foci and the angle $FBF'$ is a right angle. Then the eccentricity of the ellipse is

  • [AIEEE 2005]

Consider an ellipse with foci at $(5,15)$ and $(21,15)$. If the $X$-axis is a tangent to the ellipse, then the length of its major axis equals

  • [KVPY 2009]

Let $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ and $ T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ Then $n ( S \cap T )$ is equal to $......$

  • [JEE MAIN 2022]

If the distance between the foci of an ellipse is $6$ and the distance between its directrices is $12$, then the length of its latus rectum is

  • [JEE MAIN 2020]

If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta  > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to

  • [JEE MAIN 2019]