Let $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ and $\mathrm{D}(\gamma, \delta)$ be the vertices of a parallelogram $A B C D$. If the point $C$ lies on $2 x-y=5$ and the point $D$ lies on $3 x-2 y=6$, then the value of $|\alpha+\beta+\gamma+\delta|$ is equal to_____.
$30$
$31$
$32$
$33$
In a rectangle $A B C D$, the coordinates of $A$ and $B$ are $(1,2)$ and $(3,6)$ respectively and some diameter of the circumscribing circle of $A B C D$ has equation $2 x-y+4=0$. Then, the area of the rectangle is
If the point $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ lies on the curve traced by the mid-points of the line segments of the lines $x$ $\cos \theta+ y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ between the coordinates axes, then $\alpha$ is equal to
The base of an equilateral triangle with side $2 a$ lies along the $y$ -axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
A straight line passing through $P(3, 1)$ meet the coordinates axes at $A$ and $B$. It is given that distance of this straight line from the origin $'O'$ is maximum. Area of triangle $OAB$ is equal to
$ABC$ is an isosceles triangle . If the co-ordinates of the base are $(1, 3)$ and $(- 2, 7) $, then co-ordinates of vertex $A$ can be :