If one of the diameters of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is a chord of another circle $'C'$, whose center is at $(2,1),$ then its radius is..........

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $3$

  • C

    $6$

  • D

    $4$

Similar Questions

The range of values of $'a'$ such that the angle $\theta$ between the pair of tangents drawn from the point $(a, 0)$ to the circle $x^2 + y^2 = 1$ satisfies $\frac{\pi }{2} < \theta < \pi$ is :

The equation of circle which passes through the point $(1,1)$ and intersect the given circles ${x^2} + {y^2} + 2x + 4y + 6 = 0$ and ${x^2} + {y^2} + 4x + 6y + 2 = 0$ orthogonally, is

The circle on the chord $x\cos \alpha + y\sin \alpha = p$ of the circle ${x^2} + {y^2} = {a^2}$ as diameter has the equation

The equation of radical axis of the circles ${x^2} + {y^2} + x - y + 2 = 0$ and $3{x^2} + 3{y^2} - 4x - 12 = 0,$ is

The distance from the centre of the circle $x^2 + y^2 = 2x$ to the straight line passing  through the points of intersection of the two circles $x^2 + y^2 + 5x -8y + 1 =0$ and $x^2 + y^2-3x + 7y -25 = 0$ is-