The distance from the centre of the circle $x^2 + y^2 = 2x$ to the straight line passing through the points of intersection of the two circles $x^2 + y^2 + 5x -8y + 1 =0$ and $x^2 + y^2-3x + 7y -25 = 0$ is-
$1$
$3$
$2$
$1/3$
A circle with radius $12$ lies in the first quadrant and touches both the axes, another circle has its centre at $(8,9)$ and radius $7$. Which of the following statements is true
If the circles ${x^2} + {y^2} - 9 = 0$ and ${x^2} + {y^2} + 2ax + 2y + 1 = 0$ touch each other, then $a =$
The equation of the circle which intersects circles ${x^2} + {y^2} + x + 2y + 3 = 0$, ${x^2} + {y^2} + 2x + 4y + 5 = 0$and ${x^2} + {y^2} - 7x - 8y - 9 = 0$ at right angle, will be
Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}^{\prime}$ intersect at two distinct points, is ${R}-[a, b]$, then the point $(8 a+12,16 b-20)$ lies on the curve:
If one of the diameters of the circle $x^{2}+y^{2}-2 \sqrt{2} x$ $-6 \sqrt{2} y+14=0$ is a chord of the circle $(x-2 \sqrt{2})^{2}$ $+(y-2 \sqrt{2})^{2}=r^{2}$, then the value of $r^{2}$ is equal to