The equation of circle which passes through the point $(1,1)$ and intersect the given circles ${x^2} + {y^2} + 2x + 4y + 6 = 0$ and ${x^2} + {y^2} + 4x + 6y + 2 = 0$ orthogonally, is
${x^2} + {y^2} + 16x + 12y + 2 = 0$
${x^2} + {y^2} - 16x - 12y - 2 = 0$
${x^2} + {y^2} - 16x + 12y + 2 = 0$
None of these
In the figure shown, radius of circle $C_1$ be $ r$ and that of $C_2$ be $\frac{r}{2}$ , where $r= \frac {1}{3} PQ,$ then length of $AB$ is (where $P$ and $Q$ being centres of $C_1$ $\&$ $C_2$ respectively)
The equation of a circle passing through origin and co-axial to circles ${x^2} + {y^2} = {a^2}$ and ${x^2} + {y^2} + 2ax = 2{a^2},$ is
If the circles ${x^2}\, + {y^2}\, - 16x\, - 20y\, + \,164\,\, = \,\,{r^2}$ and ${(x - 4)^2} + {(y - 7)^2} = 36$ intersect at two distinct points, then
The lengths of tangents from a fixed point to three circles of coaxial system are ${t_1},{t_2},{t_3}$ and if $P, Q$ and $R$ be the centres, then $QRt_1^2 + RPt_2^2 + PQt_3^2$ is equal to
The number of common tangents to the circles ${x^2} + {y^2} - x = 0,\,{x^2} + {y^2} + x = 0$ is