If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is

  • [IIT 1990]
  • A

    $( - 1,\;1)$

  • B

    $\left[ { - \frac{1}{2},\;\frac{1}{2}} \right]$

  • C

    $\left[ { - 1,\;\frac{1}{2}} \right]$

  • D

    $\left[ { - \frac{1}{2},\; - 1} \right]$

Similar Questions

Show that the function $f: N \rightarrow N ,$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2,$ is onto but not one-one.

Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is

If $f:R \to R$ and $g:R \to R$ are given by $f(x) = \;|x|$ and $g(x) = \;|x|$ for each $x \in R$, then $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $

The function $f(x) =$ ${x^{\frac{1}{{\ln \,x}}}}$

Let $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ then