Show that the function $f: N \rightarrow N ,$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2,$ is onto but not one-one.
$f$ is not one-one, as $f(1)=f(2)=1 .$ But $f$ is onto, as given any $y \in N ,\, y \neq 1$ we can choose $x$ as $y+1$ such that $f(y+1)$ $=y+1-1=y .$ Also for $1 \in N$, we have $f(1)=1$.
Greatest value of the function, $f(x) = - 1 + \frac{2}{{{2^x}^2 + 1}}$ is
solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
Consider a function $f:\left[ { - 1,1} \right] \to R$ where $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ Where $\alpha _i\ 's$ are positive constants and $n \in N < 100$ , then $f(x)$ is
Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which
$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is