यदि बल $(F)$, लम्बाई $(L)$ तथा समय $(T)$ को मूल-मात्रक माना जाये तो द्रव्यमान का विमीय सूत्र होगा
$F{L^{ - 1}}{T^2}$
$F{L^{ - 1}}{T^{ - 2}}$
$F{L^{ - 1}}{T^{ - 1}}$
$F{L^2}{T^2}$
एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।
यदि $L,\,\,C$ तथा $R$ क्रमश: प्रेरकत्व, धारिता तथा प्रतिरोध प्रदर्शित करते हैं, तो निम्न में से कौन आवृत्ति की विमायें प्रदर्शित नहीं करेगा
कभी-कभी मात्रकों की एक पद्धति का निर्माण करना सुविधाजनक होता है ताकि सभी राशियों को केवल एक भौतिक राशि के पदों में व्यक्त किया जा सके। इस प्रकार की पद्धति में, विभिन्न राशियों की विमाओं को राशि $X$ के पदों में निम्नानुसार दिया गया है: $[$ स्थिति $]=\left[ X ^{ \alpha }\right]$; [चाल $]=\left[ X ^\beta\right]$; [त्वरण $]=\left[ X ^{ p }\right]$; [रेखीय संवेग $]=\left[ X ^{ q }\right] ;[$ बल $]=\left[ X ^{ R }\right]$ । तब
$(A)$ $\alpha+ p =2 \beta$
$(B)$ $p + q - r =\beta$
$(C)$ $p - q + r =\alpha$
$(D)$ $p+q+r=\beta$
$F=\alpha t^2+\beta t$ द्वारा परिभाषित एक बल दिये गये समय $t$ पर एक कण पर आरोपित होता है। यदि $\alpha$ तथा $\beta$ नियतांक हो तो निम्न में से कौन सा घटक विमाहीन है ?