જો કોઈક વાસ્તવિક સંખ્યા $\alpha$ અને $\beta$  માટે આપલે સમતલો  $x+4 y-2 z=1$ ; $x+7 y-5 z=\beta$ ; $x+5 y+\alpha z=5$ નો છેદગણ અવકાશમાં રેખા દર્શાવે છે  તો $\alpha+\beta$  મેળવો.

  • [JEE MAIN 2020]
  • A

    $10$

  • B

    $-10$

  • C

    $2$

  • D

    $0$

Similar Questions

$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$

જો સુરેખ સમીકરણો $kx + y + z =1$ $x + ky + z = k$ અને $x + y + zk = k ^{2}$ એ એકપણ ઉકેલ નો ધરાવે તો $k$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

અહી $A=\left(\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right),$ કે જ્યાં $[t]$ એ મહતમ પૂર્ણાંક દર્શાવે છે . જો  $\operatorname{det}(\mathrm{A})=192$ આપેલ હોય તો $\mathrm{x}$ ની કિમંતો  . . . . અંતરાલમાં આવેલ છે.

  • [JEE MAIN 2021]

જો $A = \left[ {\begin{array}{*{20}{c}}
  2&b&1 \\ 
  b&{{b^2} + 1}&b \\ 
  1&b&2 
\end{array}} \right]$  કે જ્યાં $b > 0$. તો $\frac{{\det \left( A \right)}}{b}$ ની ન્યૂનતમ કિમંત મેળવો.

  • [JEE MAIN 2019]

કોઈ $\alpha, \beta \in R$ માટે નીચેની સમીકરણ સંહતિ ધ્યાને લો. $\alpha x+2 y+z=1$  ;  $2 \alpha x+3 y+z=1$ ;  $3 x+\alpha y+2 z=\beta$  ;  તો નીચેના પૈકી ક્યુ સાચું નથી ?

  • [JEE MAIN 2023]