If energy $(E)$, velocity $(v)$and force $(F)$ be taken as fundamental quantity, then what are the dimensions of mass
$E{v^2}$
$E{v^{ - 2}}$
$F{v^{ - 1}}$
$F{v^{ - 2}}$
An object is moving through the liquid. The viscous damping force acting on it is proportional to the velocity. Then dimension of constant of proportionality is
Match the following two coloumns
Column $-I$ | Column $-II$ |
$(A)$ Electrical resistance | $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$ |
$(B)$ Electrical potential | $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$ |
$(C)$ Specific resistance | $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$ |
$(D)$ Specific conductance | $(s)$ None of these |
The entropy of any system is given by
${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$
Where $\alpha$ and $\beta$ are the constants. $\mu, J, K$ and $R$ are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant repectively. [Take ${S}=\frac{{dQ}}{{T}}$ ]
Choose the incorrect option from the following: