Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$ 

      $B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$ 

$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ . 

If set $C$ is singleton set then sum of all possible values of $m$ is

  • A

    $0$

  • B

    $\frac{{\sqrt 3 }}{2}$

  • C

    $ - \frac{{\sqrt 3 }}{2}$

  • D

    none of these

Similar Questions

If the centre, one of the foci and semi-major axis of an ellipse be $(0, 0), (0, 3)$ and $5$ then its equation is

A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^2}{4}+\frac{y^2}{3}=1$ at the points $P$ and $Q$. Let the tangents to the ellipse at $P$ and $Q$ meet at the point $R$. If $\Delta(h)=$ area of the triangle $P Q R, \Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ and $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$, then $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$

  • [IIT 2013]

Find the coordinates of the foci, the rertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$

If $a$ and $c$ are positive real numbers and the ellipse $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ has four distinct points in common with the circle $x^2 + y^2 = 9a^2$ , then

  • [JEE MAIN 2013]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$