If doubling the initial concentration of reactant doubles $t_{1/2}$ of reaction, the order of reaction is
$3$
$2$
$1$
$0$
The reaction, ${N_2}{O_5} \longrightarrow 2NO + \frac{1}{2}\,{O_2}$ is of first order for $N_2O_5$ with rate constant $6.2 \times 10^{-4}\, s^{-1}$. what is the value of rate of reaction when $[N_2O_5] = 1.25\, mol\, L^{-1}$
The mechanism of the reaction $A + 2B \to D$ is
$2B\xrightarrow{k}{B_2}\,\left[ {Slow} \right]$
${B_2} + A \to D\,\left[ {Fast} \right]$
The rate law expression, order with respect to $A$, order with respect to $'B'$ and overall order of reaction are respectively
For the following reaction: $NO_2(g) + CO(g) \to NO(g) + CO_2(g)$, the rate law is: Rate $= k \,[NO_2]^2$. If $0.1\,mole$ of gaseous carbon monoxide is added at constant temperature to the reaction mixture which of the following statements is true?
Time required for completion of ionic reactions in comparison to molecular reactions is
If initial concentration is reduced to its $1/4^{th}$ in a zero order reaction, the time taken for half of the reaction to complete