જો વિધેય $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ નો પ્રદેશગણ $R$ હોય તો $m$ ની ........... શક્ય પુર્ણાક કિમતો મળે.
$3$
$4$
$6$
$7$
જો $f\ (x)$ વિધેય દરેક $x, y, \in N$ માટે $f\ (x + y) = f(x) f(y)$ ને સંતોષે જેથી $f(1) = 3$ અને $\sum\limits_{x\, = \,1}^n {{{f}}(x)} \, = \,120$ થાય. તો $n$ નું મૂલ્ય કેટલું થાય?
ધારોકે $f$ એ પ્રત્યેક $f(x+y)=f(x)+f(y)$ માટે $x, y \in N$ અને $f(1)=\frac{1}{5}$ નું સમાધાન કરતુ વિધેય છે. જો $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$ હોય, તો $m=..........$
જો $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ તો સમીકરણ $f(x) = 0$ ને . . . .
વિધેય $f(x) = \frac{{{x^2} - 3x + 2}}{{{x^2} + x - 6}}$ નો પ્રદેશ મેળવો.
વિધેય $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ હોય તો f (x) નો વિસ્તાર મેળવો