यदि नियताओं के बीच की दूरी नाभियों के बीच की दूरी की तीन गुनी हो तो दीर्घवृत्त की उत्केन्द्रता होगी
$1\over2$
$2\over3$
$1\over \sqrt 3 $
$4\over5$
दीर्घवृत्त $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ की नाभियाँ हैं
अंतराल $0<\theta<\frac{\pi}{2}$ में दीर्घवृत $\frac{x^2}{9}+\frac{y^2}{4}=1$ के चार बिन्दुओं $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ पर चार स्पर्शज्याएँ खींची गयी है। यदि $A(\theta)$ इन स्पर्शज्याओं द्वारा बनाए गए चतुर्भुज को इंगित करता है, तब $A(\theta)$ का न्यूनतम मान निम्न होगा:
माना दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b$, की उत्केन्द्रता $\frac{1}{4}$ है। यदि यह दीर्घवृत्त बिन्दु $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$ से गुजरता है तो $a ^2+ b ^2$ बराबर होगा।
एक दीर्घवृत्त, जिसकी नाभियाँ $(0,2)$ तथा $(0,-2)$ पर हैं तथा जिसके लघु अक्ष की लम्बई $4$ है, निम्न में से किस बिन्दु से होकर जाता है ?
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 2,\;0)$ तथा उत्केन्द्रता $\frac{1}{2}$है, होगा