If both roots of quadratic equation ${x^2} + \left( {\sin \,\theta  + \cos \,\theta } \right)x + \frac{3}{8} = 0$ are positive and distinct then complete set of values of $\theta $ in $\left[ {0,2\pi } \right]$ is 

  • A

    $\left( {\frac{\pi }{{12}},\frac{{5\pi }}{{12}}} \right)$

  • B

    $\left( {\frac{{13\pi }}{{12}},\frac{{17\pi }}{{12}}} \right)$

  • C

    $\left( {\frac{{7\pi }}{{12}},\frac{{11\pi }}{{12}}} \right)$

  • D

    $\left( {\frac{{19\pi }}{{12}},\frac{{23\pi }}{{12}}} \right)$

Similar Questions

The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is

If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is

If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =

The solution of the equation ${\cos ^2}x - 2\cos x = $ $4\sin x - \sin 2x,$ $\,(0 \le x \le \pi )$ is

Find the principal and general solutions of the question $\tan x=\sqrt{3}$.