If both roots of quadratic equation ${x^2} + \left( {\sin \,\theta + \cos \,\theta } \right)x + \frac{3}{8} = 0$ are positive and distinct then complete set of values of $\theta $ in $\left[ {0,2\pi } \right]$ is
$\left( {\frac{\pi }{{12}},\frac{{5\pi }}{{12}}} \right)$
$\left( {\frac{{13\pi }}{{12}},\frac{{17\pi }}{{12}}} \right)$
$\left( {\frac{{7\pi }}{{12}},\frac{{11\pi }}{{12}}} \right)$
$\left( {\frac{{19\pi }}{{12}},\frac{{23\pi }}{{12}}} \right)$
$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ then $x = $
All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
For each positive real number $\lambda$. Let $A_\lambda$ be the set of all natural numbers $n$ such that $|\sin (\sqrt{n+1})-\sin (\sqrt{n})|<\lambda$. Let $A_\lambda^c$ be the complement of $A_\lambda$ in the set of all natural numbers. Then,
The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is
Let $f(x)=\cos 5 x+A \cos 4 x+B \cos 3 x$ $+C \cos 2 x+D \cos x+E$, and
$T=f(0)-f\left(\frac{\pi}{5}\right)+f\left(\frac{2 \pi}{5}\right)-f\left(\frac{3 \pi}{5}\right)+\ldots+f\left(\frac{8 \pi}{5}\right)-f\left(\frac{9 \pi}{5}\right) \text {. }$Then, $T$