જો વર્તુળ $C$ એ બિંદુ $(4, 0)$ માંથી પસાર થતું હોય અને વર્તુળ $x^2 + y^2 + 4x - 6y - 12 = 0$ ને બહારથી બિંદુ $(1, -1)$ માં સ્પર્શે તો વર્તુળ $C$ ની ત્રિજ્યા મેળવો.
$5$
$2\sqrt 5$
$4$
$\sqrt {57}$
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
જો બે વર્તૂળો $x^2 + y^2 + 2x - 4y - 4 = 0$ અને $x^2 + y^2 + 2x - 4y - 20 = 0$ ની વચ્ચેનું વર્તૂળ $x^2 + y^2 + 2x - 4y - k = 0$ હોય, તો$k = ……..$
ત્રણ વર્તૂળો $ x^2+ y^2 = a^2, (x - c)^2 + y^2 = a^2$ અને $x^2+ (y - b)^2 = a^2 $ નું મૂલાક્ષ કેન્દ્ર (Radical Center) મેળવો.
ધારોકે વર્તુળો $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ અને $C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$ એકબીજાને $(6,6)$ આગળ બહારથી સ્પર્શ છે. જો બિંદુુ (6, 6) એ, વર્તુળો $C_1$ અને $C_2$ ના કેન્દ્રોને જોડતી રેખાખંડનું $2:1$ ના ગુણોત્તર માં અંદરથી વિભાજન કરે, તો $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)=$ ...........
The circles ${x^2} + {y^2} - 10x + 16 = 0$ and ${x^2} + {y^2} = {r^2}$ intersect each other in two distinct points, if