જો $f:\left\{ {1,2,3,4} \right\} \to \left\{ {1,2,3,4} \right\}$ અને $y=f(x)$ એ વિધેય છે કે જેથી $\left| {f\left( \alpha  \right) - \alpha } \right| \leqslant 1$,for $\alpha  \in \left\{ {1,2,3,4} \right\}$ હોય તો વિધેયોની સંખ્યા .... થાય

  • A

    $81$

  • B

    $36$

  • C

    $54$

  • D

    none of these

Similar Questions

જો $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. તો, $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ થાય.

  • [IIT 2001]

જો દરેક વાસ્તવિક સંખ્યા માટે $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ તો $ f$ ની ન્યૂનતમ કિમત મેળવો.

જો $\,\,f(x) = \left\{ {\begin{array}{*{20}{c}}
  {3 + x;\,\,\,\,\,x \geqslant 0} \\ 
  {2 - 3x;\,\,\,\,\,x < 0} 
\end{array}} \right.$ હોય તો  $\mathop {\lim }\limits_{x \to 0} f(f(x))$ ની કિમત મેળવો.

$f(1)+f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$ જ્યાં $f(1)=1$ નું સમાધાન કરતો વિધેય $f: N \rightarrow R$ ધ્યાને લો તો $\frac{1}{f(2022)}+\frac{1}{f(2028)}=............$

  • [JEE MAIN 2023]

જો $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ નો વિસ્તારગણ ($a, b$] હોય તો ($a +b$) ની કિમત ........ મળે.